Hoy conoceremos como es una PC por dentro.

 

1.- EL AREA DE PROCESAMIENTO.

 

Los componentes que pertenecen al área de procesamiento se sitúan sobre la placa madre ( también denominada placa principal ) de la computadora. Se usa el termino placa madre debido a que todos los demás grupos de componentes y dispositivos periféricos son controlados a través de la misma.

  Con la excepción de los puertos de entrada y salida de datos y el dispositivo de almacenamiento masivo, que de hecho son periférico, la placa madre constituye la computadora en sí.

 Actúa como el componente central de todo sistema. La placa principal determina la categoría a la cual pertenece el sistema en términos generales (que depende de las condiciones). Trataremos las clases o categorías mas adelante. El procesamiento o el tratamiento de los datos tiene lugar siempre sobre la placa madre.

  Si la computadora se encuentra dentro de una carcasa de sobremesa, la placa madre esta adosada al fondo de la misma. Sin embargo, las carcasas y minitorre se hacen cada vez más populares. En estas carcasas verticales, la placa principal se encuentra adosada de forma vertical a un lateral.

  Las dimensiones de placa madre (es decir, su tamaño, la ubicación de los orificios de montaje, etc.) pueden variar según el fabricante. Algunas placas madres proceden de fabricantes de marca y otros provienen de suministros poco conocidos que proporcionan placas sin marca. La mayoría de las placas sin marca tienen las mismas dimensiones y por eso siempre encajan en el mismo lugar.

 

 

No obstante, los fabricantes de marca no quieren que los demás sustituyan sus placas originales por otras, y por eso encontramos que frecuentemente las conexiones se colocan de forma especial (por ejemplo las de una red) para que solo se puedan utilizar las de la casa que suministro la computadora.

 

Una de las ventajas de las computadoras clónicas (sin marca conocida) es que en las mismas suelen ser más fácil intercambiar o agregar componentes de mayor capacidad y rendimiento. Al algunos fabricantes, tales como Zenith y Tandon, han vuelto a descubrir un viejo procedimiento: tratar la placa principal como si fuese una tarjeta de expansión. Así el fondo de la carcasa contiene únicamente el bus y varias ranuras de expansión.

 

Al igual de otras tarjetas de expansión, este tipo de placa madre se conecta a una de estas ranuras. La ventaja de esta configuración es la de reemplazar fácilmente la placa principal con otra mas potente. Sin embargo hay que usar la misma marca. Por desgracia, esto significa que acaba dependiendo de los últimos avances tecnológicos de un fabricante en concreto y de sus niveles de precios.

 

Las placas principales modernas normalmente consisten en un material no conductor que es insensible al calor (Pertinax). Se puede imaginar este tipo de construcción como una serie de capas de circuitos impresos. La corriente fluye a través de líneas conductoras sobre cada capa. Estas líneas están conectadas a los chips y a otros componentes ubicados en la superficie de la placa. Estas líneas o circuitos pueden apreciarse a simple vista sobre la placa madre.

 

 

 

 

 

La interrupción de estas líneas conductoras, bien debido a daños físicos o bien debido a un corto circuito, suele provocar que toda la placa puede inutilizarse. Debido a la compleja construcción de multicapas de la placa madre, es prácticamente imposible proceder a la reparación de estos componentes. Así, pues, trate de manipular la placa madre con precaución.

 

Tal como señalamos anteriormente, la placa principal contiene todos los componentes electrónicos necesarios para procesar datos. Los componentes más importantes, que son el procesador y su acompañante numérico, el procesador matemático, constituye el cuartel general de la computadora para la emisión de ordenes. Partes fundamentales también son, la memoria del sistema y de trabajo, así como los buses de datos y de direcciones.

 

Comentaremos sobre estos componentes y otros de la placa madre más adelante en los siguientes temas. No todos los componentes pueden intercambiarse por otros, ni siquiera por componentes más potentes.

 

 

 

 

2.- EL PROCESADOR (CPU).

 

 

El chip más importante de cualquier placa madre es el procesador. Sin el la computadora no podría funcionar. A menudo este componente se determina CPU, que describe a la perfección su papel dentro del sistema. El procesador es realmente el elemento central del proceso de procesamiento de datos.

 

El CPU gestiona cada paso en el proceso de los datos. Actúa como el conductor de supervisión de los componentes de hardware del sistema. Esta unidad directa o indirectamente con todos los demás componentes de la placa principal. Por lo tanto, muchos grupos de componentes reciben ordenes y son activados de forma directa por la CPU.

 

El procesador esta equipado con buses de direcciones, de datos y de control, que le permiten llevar acabo sus tareas. Estos sistemas de buses están configurados de forma distinta según sea la categoría del procesador, lo que analizaremos más adelante. Durante el desarrollo de las PC, la arquitectura a lo que podríamos llamar unidades funcionales internas de los procesadores, han evolucionado drásticamente. Sea incorporado cada vez mayor número de transistores y circuitos integrados dentro de un espacio sumamente reducido, con objeto de satisfacer las demandas cada vez más exigentes de mayores prestaciones.

 

El procesador para computadoras personales más avanzados que se dispone en el mercado es el Intel 80486. Este procesador esta ubicado sobre una placa de cerámica de aproximadamente 20 cm² y con un espesor de apenas 2 ó 3 centímetros, más de 1.2 millones de transistores, la CPU, el coprocesador matemático y adicionalmente 8kb de memoria caché. Más adelante nos referimos a estos componentes en detalle.

 

Puesto que se hayan varios componentes en un espacio tan reducido, hace falta aplicar una técnica especial de fabricación. Estas técnicas permiten construir elementos que miden nada más que un micrómetro. Esta técnica fue implementada por la firma Intel. Para apreciar la miniaturización en cuestión, piense que un cabello humano tiene un anchura que se extendería sobre 100 unidades de estas.

 

La configuración y la capacidad del procesador son los factores que determinan el rendimiento general de la computadora personal. El chip del procesador define en que categoría debe incluirse en cada computadora.

 

Un factor importante para determinar la prestación de un procesador es su frecuencia de reloj o su velocidad de trabajo. La CPU depende de un cristal de cuarzo para su funcionamiento, que constituye una fuente externa de frecuencia, la frecuencia del reloj, se mide en impulsos por segundo, descritos como megahergios (MHz). Un megahergio equivale a un millón de impulsos por segundo. Por lo tanto una CPU de 80386 que funciona a una velocidad de 33 MHz puede realizar una operación unos 33 millones de veces cada segundo.

 

Intel es el fabricante principal de procesadores para computadoras de IBM y compatibles. Los procesadores 8086, 80286, 80386, 80486, producidos por Intel desde 1978 representan cuatro generaciones y cuatro categorías de prestaciones dentro de la historia de los microprocesadores.

 

Los otros componentes de la placa madre han evolucionado junto con el procesador en sí. Estos componentes han sido adaptados según se ha ido presentado los cambios efectuados en las características del procesador, al igual que la utilización de un nuevo tipo de motor conlleva cambios en otras partes de un automóvil.

 

Para entender la información ofrecida en este tema, primero hay que saber como ha cambiado el procesador a lo largo de los años. Así, comentaremos brevemente sobre la historia de las computadoras personales y la evolución de los microprocesadores.

 

 

EL PUNTO DE PARTIDA DE LA HISTORIA DE LA PC:

LA CPU 8086/8088 DE INTEL.

 

La empresa Intel introdujo el microprocesador 8086 de 16 bits en el año 1978. Era el primer procesador que podía disponer de los avances tecnológicos conseguidos en lenguajes de programación de alto nivel y en sistemas operativos más potentes, con lo cual se obtuvo la base para el diseño de las computadoras. Desde entonces, todos los sistemas compatibles IBM se basan, en última instancia, en la CPU 8086. Todos los descendientes de la 8086 de Intel han de ser capaces de emular este procesador.

 

 

El software que se desarrollo para el 8086 también tenia que ser compatible con chips posteriores.

 

 

El chip 8086 disponía de una estructura real de 16 bits, que el permitía trabajar con un formato de datos de 16 bits, tanto interna como externamente. Pero el elevado precio de los componentes de memoria requeridos para su uso, dificulto su comercialización.

 

La empresa IBM contrato la firma Intel para diseñar el sucesor del chip 8086, se llama CPU 8088. Las primeras computadoras personales se introdujeron en el mercado en 1981. Estas computadoras, que contaban con una capacidad de 16kb de memoria, una unidad de cinta en forma de cassette, y un monitor monocromo de color verde sin prestaciones gráficas. Ya hace más de 15 años de este acontecimiento.

 

Externamente, el chip 8088 solo usaba un formato de 8 bits para su bus de datos. Pero internamente, trabaja con 16 bits, como el procesador 8086.

La CPU 8086/8088 fue equipada con un bus de direcciones de 20 bits, que el permitía seleccionar 2 elevado a la 20 ubicaciones de memoria en forma directa, equivalente a 1 MB (1,048,576 bytes), lo que definía el límite físico de la memoria de este procesador. En sus inicios, en sus inicios funcionaba a una frecuencia de reloj impresionante de 4.77MHz. Las computadoras XT eran versiones mejoradas de las PC de IBM, con la incorporación de un disco duro. Más adelante los modelos de Turbo XT compatibles, contaban con velocidades 8 MHz, 10 MHz e incluso 12MHz.

 

Comparado con la potencia disponible hoy en día, es difícil imaginar cual era la utilidad de una computadora con un procesador 8086/8088. No obstante, el software que se disponía aquellos días no precisaba mucha potencia. Incluso un programa de tratamiento de textos reciente, como el programa Word 5.5 de Microsoft, podría funcionar correctamente con una CPU 8088.

 

 

 

EL 80286.

Pronto Intel introdujo un procesador más sofisticado, la CPU 80286, que elevo las prestaciones de la PC a un nuevo nivel. El procesador 80286 usaba un bus de datos de 16 bits, tanto interna como externamente, con lo cual superaba a su predecesor, sobre todo con respecto a la cada vez mas potente nuevas aplicaciones. Se amplio también el bus de direcciones de este procesador para direccionar 16 MB de memoria.

 

Otra diferencia básica entre el procesador 80286 y su predecesor era el juego de comandos condensada en la CPU. Aumento el numero de instrucciones que podría ejecutarse por segundo, no solamente durante una mayor frecuencia de reloj, sino también mediante una estructura de comandos más eficiente. Como resultado se multiplico por tres el valor de MIPS (millones de instrucciones por segundo).

 

De todas formas, la diferencia predominante entre las CPU 8086/8088 y 80286 radica en la adición de un nuevo modelo operativo. En el modo real o normal, la 286 funciona de la misma manera que su predecesor, con la misma limitación de un MB de memoria: Pero su mayor velocidad de reloj y juego de comandos más eficientes permitía superar a sus predecesores, incluso en el modo real.

 

El nuevo modo operativo, llamado modo protegido, le permite al procesador 80286 direccionar y gestionar mas memoria, hasta 16 MB. Así es posible procesar varias aplicaciones diferentes simultáneamente. A esta técnica se le llama multitarea.

El 80286 fue el primer procesador Intel capaz de realizar multitareas que disfrutó de una fuerte comercialización. En todo esto, solo unas cuantas aplicaciones, tales como Lotus 1-2-3 y Windows de Microsoft podían aprovecharse de esta capacidad. El sistema operativo MS/PCDos de las PC por sí solo no puede funcionar en el modo protegido puesto que solo puede poner 640 KB de memoria de trabajo a disposición de las aplicaciones. Sin embargo, existen otros sistemas operativos, como el UNIX y el OS/2, ofrecen mucho mas en este sentido.

En las PC de la categoría AT (tecnología avanzada), el procesador 286 se encuentra a menudo en la misma forma y en el mismo lugar que en la CPU 8086/8088. En cambio, hay que notar que el chip 286 no se fabricó con un formato completo. Es decir, tanto puede ser una lámina cuadrada que se sujeta mediante clips metálicos, puede ser un chip de forma cuadrada montada en un zócalo de plástico. Su ubicación sobre las distintas placas madre puede variar también. Normalmente, la única manera de identificar este chip es mediante las siglas grabadas sobre su superficie.

 

 

EL 80386.

 

La siguiente generación de procesadores para la PC trajo consigo importantes cambios en el mundo de la PC. Con la CPU 80386 DX, Intel ofreció un chip de proceso que era ampliamente superior al de sus predecesores. El 386 DX era el primer procesador de 32 Bites que pudo usarse en placas madre de las PC. Al doblar la anchura externa e interna del bus de datos utilizado en el 286, tanto interna como externamente, se le abrieron nuevos horizontes a las computadoras personales.

 

Las aplicaciones gráficas, que anteriormente corrían lentamente, ahora podrían funcionar con más rapidez. Asimismo, el uso de las interfaces gráficas de usuario (GUI), que requieren mucha más potencia del procesador, dado que redefinen toda la pantalla después de cada acción, comenzó a ser realmente posible y práctico después de haberse introducido en 80386.

 

Desde que las velocidades de los relojes se elevaron de 16 a 33 y 40 MHz y que se instaló un caché externo de memoria (ver más adelante) para incrementar el rendimiento del procesador, casi todas las computadoras modernas pueden clasificarse como «computadoras gráficas», una distinción que ya existía desde hacía algún tiempo entre las computadoras Apple, Commodore, Amiga y Atari ST que utilizan procesadores Motorola.

 

Desde que el bus de direcciones se expandió a 32 bits, el chip puede direccionar directamente 4.294.967.296 (2 elevado a la 32) localizaciones de memoria, o 4 gigabytes de RAM. Esto hace posible direccionar incluso 64 terabytes de forma virtual, lo que permite otro modo de operación, llamado el modo real virtual. Con este modo de operación, es posible efectuar la multitarea bajo MS- /PC-DOS porque cada aplicación involucrada en el proceso de multitarea recibe una CPU virtual con 1 MB de memoria.

 

Estas computadoras virtuales por separado operan como varios procesadores 8088 independientes, trabajando en paralelo en un solo sistema. No obstante, para crear este mundo artificial en la PC, se necesitaba otra ampliación del sistema operativo. Esta adición pronto fue introducida por Microsoft con la versión 3.0 del entorno gráfico de usuario MS-Windows.

 

Al igual que la CPU 286, la 386 permanece completamente compatible con códigos objeto en relación a sus predecesores. Esto significa que todos los sistemas operativos y aplicaciones diseñados para procesadores 8086 u 80286 también funcionarán en la CPU 386, sólo que mucho más deprisa.

 

El 386 también entiende los juegos de comandos utilizados por los chips más antiguos y los tiempos de ejecución son mas rápidos. A una velocidad de reloj idéntica, por ejemplo 16 MHz, el 386 puede alcanzar dos veces los MIPS (millones de instrucciones por segundo) que la CPU 80286.

 

Una característica especial de la generación 386 es que cuenta con una versión «degradada» del procesador, llamada 386SX con velocidades de reloj entre 16 y 25 MHz. «Degradada» quiere decir en este contexto que el 386SX utiliza una estructura de 32 bits sólo de forma interna. En este sentido no es inferior a su hermano el 386 «puro».

 

No obstante, externamente el SX utiliza un bus de datos que tiene el mismo tamaño que el bus encontrado en la CPU 286. También el bus de direcciones del «SX» es similar al del 286, lo cual le limita en aplicaciones multitarea.

 

El 386SX consiste básicamente en un procesador 386 en una placa madre 286. Este es el motivo por el que el SX ejecuta muchas tareas de forma mas lenta que la de su hermano mayor, el 386 «puro». Debe estar cambiando constantemente entre su estructura interna propia de 32 bits y la operación externa de 16 bits, lo cual cuesta tiempo.

 

El 386DX es fácilmente identificable en el marco de la placa madre. Tiene forma cuadrada, una inscripción que lo distingue, y una impresión en tinta azul-roja. Esta CPU 386DX está normalmente localizada transversalmente frente a las ranuras de expansión de la placa madre.

 

Puesto que los procesadores de la clase 386SX son considerablemente más pequeños, es difícil localizarlos. En vez de estar montados en un zócalo como otros procesadores Intel, están soldados directamente al circuito madre. Así pues, no pueden sacarse ni intercambiarse. Si una CPU 386SX deja de funcionar, deberá cambiarse toda la placa madre.

 

 

 

 

 

 

LA ACTUAL ESTRELLA DE LA FAMILIA INTEL.

EL PROCESADOR 1486

 

El último procesador de Intel es el i486. Esta CPU, que es mas que un procesador, se llama chip integrado. Este chip agrupa cuatro grupos de funciones distintas (la CPU real, un coprocesador matemático, un controlador caché y dos memorias de caché con 4k cada una) en un solo componente. El i486 trabaja interna y externamente con una estructura completa de 32 bits y puede alcanzar frecuencias de reloj que van desde 25 hasta 50 MHz.

 

La diferencia principal entre el i486 y sus predecesores, particularmente el chip 386, es el elevado nivel de integración del i486, Incluso un 386 con un coprocesador, no puede compararse a un i486.

 

La estructura del i486 tiene un controlador caché que está construido dentro del chip, junto con dos cachés de 4k. Al igual que el caché on-chip actúa como un buffer entre el procesador y la memoria de trabajo. La operación básica del caché integrado es idéntica a la del «caché de segundo nivel» externo, véase la descripción en el apartado 2.1.6, que explica el principio de caché RAM en detalle.

 

Él caché interno localizado en el i486 está organizado como un caché «a través de una escritura buffer». Este método lee los datos, que no pueden encontrarse en el caché, desde la memoria de trabajo y traslada esta información a la CPU y al caché. Las operaciones de escritura para localizaciones de memoria que actualmente están almacenadas en el caché, se efectúan tanto a las localizaciones de la memoria de trabajo como a las del caché.

 

Esto asegura que la información en el caché esté actualizada. Un algoritmo de gestión interna efectúa un buffer en estas operaciones de lectura y escritura, hasta que el bus externo está disponible y puede realizarse un acceso de escritura a la memoria de trabajo de la computadora. Esto libera al procesador e impide períodos de espera. Los contenidos del caché que menos se utilizan durante un cierto período de tiempo, se identifican mediante un algoritmo de control especial y vuelven a escribirse la próxima vez que se «refresca» el caché.

 

Debido al controlador interno caché, la CPU, con su elevada frecuencia de operación, rara vez debe esperar a la lentitud de la RAM de la máquina. El caché actúa como un tipo de buffer inteligente, una característica que también puede aplicarse al controlador caché. Ya que esta técnica es capaz de impedir cualquier período de espera, el i486 puede ejecutar casi todas las operaciones en un solo ciclo de reloj. Esta capacidad, por sí sola, hace que el i486 sea superior al 386.

El i486 tiene un conjunto de comandos completo, que incluye todos los conjuntos de comandos utilizados por sus predecesores. Esto da lugar a una estructura de procesador compleja. Al igual que sus predecesores, el i486 es un CISC (Com-plex Instruction Set Computer) y es compatible en forma descendente hasta el 8086. La compatibilidad descendente significa que el i486 ejecutará aplicaciones originalmente escritas para los procesadores anteriores. Debido a sus amplios conjuntos de comandos, los procesadores CISC se caracterizan por una gran flexibilidad con las aplicaciones lo cual, no obstante, puede también implicar una reducción de su velocidad.

Otros procesadores, los llamados RISC (Reduced Instruction Set Computer) alcanzan unos niveles de rendimiento superiores utilizando un reducido conjunto de comandos, que normalmente está unido a una aplicación específica (como, por ejemplo, CAD). No obstante, esto significa que el conjunto de comandos del procesador puede no ser capaz de ejecutar otras aplicaciones. Así pues, la velocidad aumenta mientras que la flexibilidad disminuye.

 

El i486 es algo así como un compromiso entre un nivel máximo de flexibilidad y una velocidad de procesamiento que es significativamente elevada para una computadora personal. La complejidad del procesador CISC y la velocidad del procesador RISC están satisfactoriamente combinadas en el 486.

 

Sin embargo, Intel ha desarrollado un sucesor al i486. El nuevo procesador de 64 bits, llamado 80586 o Pentium.

 

Ahora que ya se tiene una visión general de la historia de los microprocesadores Intel, pasamos a la pregunta que le interesa a todos los usuarios: ¿Qué procesador se requiere para una aplicación específica?

 

La prensa técnica en el campo de la informática tiende a hacer que las computadoras estén listas para salir a la venta. Así pues, puede parecer como si cierto tipo de hardware y software fuera obsoleto muchos meses antes de que esto sucediera realmente. Incluso dentro del siempre cambiante campo de la informática, suelen aparecer productos que rompen todos los moldes sólo dos veces al año.

Así pues, si lee estas publicaciones con frecuencia, no asuma automáticamente que las predicciones sean totalmente exactas.

Cuando se compra el hardware, muchos usuarios de computadoras no tienen en consideración la aplicación que van a utilizar con el mismo. Normalmente, sólo están interesados en los sistemas mas recientes o en el que está actualmente en venta. Sin embargo, la forma mejor y más económica para determinar el hardware que se necesita es considerar cómo va a ser utilizado y con qué aplicación.

 

Desde el punto de vista de la aplicación, la selección de una configuración, determinada de hardware en un principio en una consecuencia de la decisión de utilizar un determinado software. Por ejemplo, supongamos que vaya a utilizar su computadora principalmente para procesar texto, dado que quiere preparar en su casa lo que finalmente llevara a la oficina o a la inversa.

 

Otros programas no le interesan. Por supuesto, que se sobre entiende que se quiere trabajar con el mismo procesador de textos en casa y en la oficina. Si este programa es una aplicación DOS como Microsoft Word 5.5, una computadora 286 es suficiente para sus necesidades. Sin embargo, si en la oficina esta instalado Microsoft Word para Windows 2.0 y se tiene que trabajar con el mismo en casa entonces su computadora debe ajustarse a unos requisitos distintos.

 

Aunque vaya a ejecutar las mismas tareas que con Microsoft Word 5.5 (es decir, escribir cartas) necesitara una computadora mas potente.

 

Mientras vaya a tratar principalmente contextos y cálculos, una computadora personal equipada con una CPU 286. Esto incluye la utilización de la maquina para propósitos de negocios tales como contabilidad, teneduría de libros, inventario y correspondencia.

 

Pero también es cierto que algunas aplicaciones exigencias más elevadas al sistema. Esto es especialmente válido cuando la aplicación utiliza un entorno gráfico de usuario, tal como Windows. En estos casos un 386 seria mas adecuado y deacuerdo a las características se podrá optar entre 386SX y un 386DX. Normalmente, un 486 solo es necesario cuando quiera ejecutar aplicaciones especiales, tales como programa CAD complejos.

 

 

INCREMENTOS DEL RENDIMIENTO MEDIANTE LA INSTALACION DE UN NUEVO PROCESADOR.

 

 

El rendimiento de un chip procesador no puede aumentarse. Apretando tornillos no lograremos nada que el no pueda dar por si mismo. A menudo sucede lo contrario: debido a una configuración errónea el sistema opera a un rendimiento menor al potencial.

 

Solo cabe configurar óptimamente la computadora para obtener mejores resultados. Aunque esto no aumentara la capacidad operativa de su procesador, asegura que un sistema funcione a pleno rendimiento.

 

Es imposible mejorar su computadora personal a una generación elevada de procesadores simplemente instalando una nueva CPU. Recuerde que los procesadores están unidos a otros componentes de la placa madre a través de varios sistemas bus. Estas conexiones están dispuestas de forma distinta en cada tipo de procesador. Así la única forma de mejorar su 286 a un 386 o un 386 a un 486 es sustituir totalmente la placa madre.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL AUMENTO DE LA FRECUENCIA DE RELOJ DEL SISTEMA:

UNA CUESTION POLEMICA.

 

Dentro de la misma generación de procesadores (por ejemplo, la generación 386), es teóricamente posible aumentar gradualmente el rendimiento del procesador, mediante un sistema que aumente la frecuencia del reloj, esto aumentaría el numero de operaciones que el procesador podría ejecutar cada segundo, aumentando de esta forma la productividad del procesador. De este modo, se puede crear un 386 de 20 MHz a un 386 de25 MHz, simplemente cambiando el reloj del sistema por un más potente.

 

Probablemente el procesador no podrá funcionar a la frecuencia aumentada ya que no fue diseñado para operar a esa velocidad. No obstante, incluso si usted también a instalado una CPU capaz de manejar la velocidad aumentada del reloj, podría encontrarse con problemas adicionales ya que las placas madre y sus componentes, especialmente el juego de chips, tampoco estaban diseñados para operar a esa velocidad o frecuencia aumentada.

 

Así pues, el éxito de este tipo de mejora no puede garantizarse ya que muchas operaciones con periodo de tiempo critico dependen de la velocidad de reloj con que opera la CPU.

 

Puesto que este tipo de mejora rara vez funciona, no la discutiremos en detalle. Asimismo recuerde que no vale la pena aumentar el funcionamiento de su sistema mediante una velocidad de reloj superior a un 25%, pues se corre el riesgo de dañar el procesador. El único modo de aumentar el funcionamiento de el significativamente, es sustituir la placa madre de su computadora.

3.- EL COPROCESADOR.

 

El termino completo es ¨coprocesador matematico¨, con este nombre se puede deducir que no se trata de un elemento central, si no de un asistente. Un coprocesador matemático aumenta la velocidad de una computadora, ocupándose de algunas de las tareas de la CPU. No obstante el coprocesador no es un componente indispensable en una maquina. Se puede instalar un coprocesador en la placa madre, siempre y cuando esta disponga de la ranura correspondiente.

 

 

Puesto que lo que hace la CPU no es otra cosa de cálculos, el lector podría estar preguntándose porque necesita ayuda para realizarlos. Lo que ocurre es que la CPU solo puede llevar a cabo operaciones aritméticas básicas con números enteros.

 

 

La CPU tiene problemas para procesar operaciones con valores fraccionarios puesto que no son números enteros. Así la CPU requiere bastante tiempo para resolverlas. Siempre deban realizar muchos cálculos complejos (por ejemplo, al calcular funciones tangentes, exponenciales y raíces) puede disminuir su velocidad considerablemente, debido especialmente a la unidad de procesamiento tiene que ejecutar también otras tareas simultáneamente.

 

Especialmente en aquellas operaciones en las cuales se trabaja con fracciones y cifras muy complicadas en cuestiones aritméticas de coma flotante, el coprocesador muestra su idoneidad. En aquellos campos de aplicación donde se requieren muchas posiciones decimales y los errores de redondeo deben de mantenerse tan insignificantes como sea posible, resulta imprescindible la utilización de un coprocesador.

 

 

Un coprocesador puede ser extremadamente útil para realizar este tipo de cálculos. Normalmente, las aplicaciones científicas y técnicas requieren un coprocesador matemático. No obstante, para utilizar un coprocesador los programas deben estar específicamente diseñados para ello. De nuevo el paquete de software que vaya usted a utilizar constituye el factor decisivo que determinara si su sistema debe estar equipado con un coprocesador. Algunos paquetes de programas modernos de CAD/CAM, como AutoCAD, requieren un coprocesador.

 

 

Un coprocesador es también útil para utilizar gráficos vectoriales. Sin embargo, no aumenta el rendimiento de las aplicaciones que utilizan gráficas de puntos.

 

 

Con cada generación de CPU utilizada en sistemas de computadoras personales Intel, también introducía sus correspondiente coprocesador. Así las familias de procesadores Intel, desde 8088 al 80386, tienen sus compañeros coprocesadores matemáticos, el 8087, 80287, 80387SX y 80387. Sin embargo, otros fabricantes, como AMD, CYRIX, ITT, y ULSI, también fabrican coprocesadores.

 

 

Los coprocesadores de estos fabricantes pueden utilizarse sin ningún problema. Son totalmente compatibles con los coprocesadores de Intel, en ocasiones son mas rápidos y precisos y siempre más económicos. Aunque la denominación del modelo utilizado por los distintos fabricantes para cada generación de procesadores varía, es fácil determinar para cada línea de CPU se ha diseñado un coprocesador dado.

 

 

Los coprocesadores están todavía mas críticamente ajustados a la velocidad del reloj que los procesadores normales. Por lo tanto, debe asegurarse que cualquier coprocesador que seleccione para su sistema este diseñado para manejar la frecuencia de reloj de su computadora. Para ello, debe considerar varios factores.

 

Los coprocesadores para computadoras 286, al contrario que los coprocesadores de las demás familias de los procesadores, operan a solo 2/3 de la capacidad de la frecuencia de reloj del sistema. Esto significa que, para una computadora 286 de 16 MHz, podría realmente utilizar un coprocesador diseñado para operar a 12 MHz. Por parte de Intel ya se ofertan coprocesadores cuyo margen de frecuencia va de 6 a 20 MHz. Puesto que la frecuencia del procesador es solo 2/3 de la frecuencia real del sistema, solo hay un pequeño aumento en el rendimiento cuando se añade un coprocesador a una CPU 286. Habría un mayor aumento en el rendimiento con un sistema 386 porque este sistema utiliza un coprocesador que funciona a la velocidad real del sistema.

 

Tal como mencionamos, el coprocesador para el 486 ya esta construido en el chip de procesador. Como resultado, ya no es necesario que los dos procesadores se comuniquen mediante un externo.

 

El 486SX, la versión base del 486, no esta equipada con un coprocesador integrado, pero puede instalarse un coprocesador externo 487SX. Puesto que estos dos procesadores, al igual que las familias inferiores de procesadores, diseñados para varias aplicaciones especificas. Por ejemplo, se ha diseñado un coprocesador que se utiliza específicamente con el paquete de software de AutoCAD.

 

Weitek también ha desarrollado un coprocesador mayor y significativamente más rápido que puede conectarse a las mayorías de placas 386 y 486. Normalmente, las placas madres 386 están equipadas con un zócalo capaz de aceptar tanto el Intel 80387 como el Weitek 1167. Muchas placas 486 también pueden aceptar un Weitek 4167 además del coporcesador integrado. Puesto que el procesador Weitek opera de forma más precisa que el Intel estándar, se utiliza a menudo en aplicaciones científicas.

 

 

EMULACIONES DEL COPROCESADOR.

 

No hace tanto que los coprocesadores costaban una fortuna, si bien su utilización era necesaria como hoy en algunas aplicaciones. Por esta razón, la alternativa más socorrida era servirse de un emulador de coprocesador, dichos programas de emulación han sido diseñados para dotar a la CPU de la metodología de trabajo de un coprocesador y hacerlas actuar como si dispusieran del correspondiente chip numérico.

 

Algunos de esos programas registran un elevado rendimiento y funcionan de forma excelente. Su Software de aplicación es, asimismo, adecuado. También los programas de aplicación trabajan bien con estas emulaciones. Aun así, no llegan a sustituir las alternativas de hardware. En la actualidad los precios de los coprocesadores son tan bajos que las alternativas

de adquisición son bajas.

 

 

 

AUMENTO DEL RENDIMIENTO DEL COPROCESADOR MEDIANTE LA UTILIZACION DE ZOCALOS FAST.

 

En general los coprocesadores pueden aplicarse ya lo expuesto en relación con la sustitución de procesadores en los tema 2.1.1. Unicamente puede añadirse la posibilidad que ofrece el 286 de mejorar el rendimiento del procesador numérico con independencia del resto de componentes de la placa madre. Como ya hemos mencionado, la NPU 287 opera a una frecuencia de reloj de 2/3. Esto admite modificaciones si se agrega al zócalo del procesador un zócalo fast que sea entonces el que incorpore al coprocesador. Este Trubozócalo contiene su propio cuarzo y actúa, por tanto, independientemente de la frecuencia de reloj del sistema.

 

Los zócalos rápidos se pueden obtener en todas las frecuencias del 286. El chip del coprocesador que debe instalarse encima de ellos tiene que estar configurado, naturalmente, para la frecuencia en cuestión. Esto se mantiene igual. Emplear este método para que el procesador funcione bastante más rápidamente que la CPU no tiene mucho sentido: es como disponer de una calculadora muy veloz que no pueda ofrecer resueltos por tener que adecuarse al ritmo de reacción de su dueño.

 

 

4.- EL SISTEMA DE BUS.

 

El bus es algo así como el correo de una computadora. Asume todas las tareas relacionadas con la comunicación que van dirigidas a la placa principal,desde el envío de paquetes de datos hasta la puesta a punto y supervisión de números telefónicos, pasando por la devolución de información cuando el receptor esta ausente o se retrasa.

 

El bus vincula la CPU con la placa madre o con las tarjetas de expansión. A través de el se reproducen caracteres en el monitor o se escriben informaciones procedentes de un escáner directamente en la memoria de trabajo, esquivando la CPU.

 

El bus puede, por ejemplo, abastecer una tarjeta de audio con datos en forma de música desde la memoria de trabajo, liberando al procesador de esa tarea. Asimismo se encarga de interrumpir sus operaciones si el sistema registra algún error, ya sea que un sector de la memoria no pueda leerse correctamente o que la impresora, que como no también opera bajo su dirección, se haya quedado sin papel. En pocas palabras, el bus es el elemento responsable de la correcta interacción entre los diferentes componentes de la computadora. Es, por tanto, su dispositivo central de comunicación.

 

Resulta obvio, pues, que un dispositivo tan importante y complejo puede ejercer una influencia decisiva sobre el desarrollo de los procesos informativos. Es también evidente que de la capacidad operativa del bus dependerá en buena medida el rendimiento general de la maquina. Por todo ello, hemos decidido abordar este tema con mas detenimiento.

 

 

 

 

LOS COMPONENTES DEL BUS

 

Un bus esta compuesto ni mas ni menos que de conductos. Imagíneselos simplemente como hilos, porque, a decir verdad, esta imagen se acerca mucho a la realidad. En efecto, buena parte de las conexiones de la CPU no son sino conductos del bus. Si exceptuamos unas cuantas funciones adicionales, estos conductos constituyen la única vía de contacto del procesador con el mundo exterior.

A través de las mencionadas vais, la CPU puede acceder a la memoria de trabajo para interpretar las instrucciones de un programa ejecutable o para leer, modificar o trasladar los datos ahí ubicados. Los conductos especialmente destinados al transporte de datos reciben el nombre de buses de datos .

No basta con que el procesador escriba en el bus de datos sus informaciones-cualquiera que sea su formato, es necesario también que establezca cual va a ser el destino de los mismos. Esta operación se lleva a cabo seguramente ya lo habrá adivinado a través de otro grupo de conductos conocido como el bus de direcciones.

Por |enero 22nd, 2010|Varios|0 Comentarios

Leave A Comment