En este manual veremos información sobre las impresoras láser

En la década del 80 predominaron las impresoras matriciales y las láser. La impresora láser fue introducida por Hewlett-Packard en 1984, basada en tecnología desarrollada por Canon. La impresora láser trabaja de manera similar a una fotocopiadora, la diferencia es la fuente de luz. Con una fotocopiadora una página es escaneada con una luz brillante, mientras que en una impresora láser es escaneada, obviamente, por un láser. Después de eso el proceso es prácticamente idéntico, con la luz creando una imagen electroestática de la página en un fotorreceptor cargado, que atrae el tóner en la forma de su carga electroestática.

Las impresoras láser rápidamente se volvieron populares tanto por la alta calidad de su impresión, como por sus costos relativamente bajos. Como el mercado de las impresoras láser se ha desarrollado, la competencia entre los fabricantes se ha vuelto cada vez más feroz, con los precios cada vez más bajos y llegando a una resolución de 600 dpi como estándar, además de fabricar impresoras cada vez más pequeñas y con más prestaciones para el usuario hogareño.

Las impresoras láser tienen unas cuantas ventajas sobre sus rivales de inyección a tinta. Producen texto en blanco y negro de calidad superior, tienen un ciclo de trabajo de más páginas por mes y un costo más bajo por página. Así que si una oficina necesita una impresora para una carga de trabajo importante, las impresoras láser son la mejor opción.

Considerando lo que sucede dentro de una impresora láser, es sorprendente lo que puede ser producido con poco dinero. De muchas formas, los componentes que la forman son bastante más sofisticados que los que se encuentran en una computadora. El RIP (Raster Image Processor) puede usar un procesador avanzado RISC. La ingeniería de los soportes de los espejos es muy avanzado, además realiza la impresión sin producir prácticamente ningún sonido. El llevar la imagen desde la pantalla de la PC hasta el papel, requiere una interesante mezcla de codificación, electrónica, óptica, mecánica y química.

Comunicación

Una impresora láser necesita tener toda la información acerca de la página en su memoria antes de que pueda empezar a imprimir. Como una imagen es comunicada desde la memoria de la PC hasta una impresora láser depente del tipo de impresora que esté siendo usada. La solución menos sofisticada es la transferencia de una imagen bitmap. En este caso no hay mucho que la computadora pueda hacer para mejorar la calidad, así que mandar punto por punto es todo lo que puede hacer.

De todas maneras, si el sistema sabe más acerca de la imagen que puede mostrar en la pantalla, hay mejores maneras de comunicar los datos. Una hoja estándar A4 mide 8.5 pulgadas de ancho por 11 de alto. A 300 dpi, eso es más de 8 millones de puntos comparados con los 800.000 pixeles en una pantalla de 1024 x 768. Hay un obvio espacio para una imagen más exacta en el papel, incluso más a 600 dpi, donde la página puede tener 33 millones de puntos.

La mejor manera en que la calidad puede ser mejorada es enviando una descripción de la página conteniendo información vectorial outline y permitiendo a la impresora de hacer el mejor uso posible de ésta. Si a la impresora se le dice que dibuje una linea de un punto a otro, puede usar el principio de geometría básico que dice que una línea tiene longitud, pero no ancho, y dibujar esa línea de un punto de ancho. Lo mismo sucede con las curvas que pueden ser tan finas como la resolución de la impresora permita. La idea es que una simple descripción de la página puede ser enviada hacia cualquier dispositivo adecuado, la cual subsecuentemente la imprimirá según su capacidad. De aquí el muy usado término de dispositivo independiente .

Los caracteres del texto están hechos de líneas y curvas, así que pueden ser manejados de la misma manera, pero la mejor solución es usar una forma de fuente predescrita, como True Type o Type 1. Además de la ubicación precisa, el lenguaje de descripción de página (PDL) puede tomar la forma de una fuente y manipularla a escala, rotarla, etc. Hay una ventaja adicional de sólo requerir un archivo por fuente en oposición a un archivo por cada tamaño del punto. Teniendo outlines predefinidos para las fuentes, se permite a la computadora enviar una cantidad pequeña de información – un byte por carácter – y producir texto en cualquiera de los diferentes estilos y tamaños de fuentes.

Fig. 9. Funcionamiento de una impresora láser

Operación

Cuando la imagen a ser impresa es comunicada a través de un lenguaje

de descripción de página, el primer trabajo de la impresora es convertir las instrucciones en un mapa de bits. Esto es hecho por el procesador interno de la impresora, y el resultado es una imagen (en memoria) de cada punto que será ubicado en el papel. Los modelos designados como Windows printers no tienen sus propios procesadores, así que la PC anfitrión crea el mapa de bits, grabándola directamente en la memoria de la impresora.

El corazón de una impresora láser es un pequeño tambor rodante – el cartucho orgánico fotoconductor (OPC) – con un revestimiento que le permite mantener una carga electrostática. Un láser recorre la superficie del tambor, colocando selectivamente puntos de carga positiva, que representarán la imagen de salida. El tamaño del tambor es el mismo que el del papel en el cual la imagen aparecerá, cada punto en el tambor correspondiendo a un punto en la hoja de papel. En el momento apropiado, el papel es pasado a través de un cable cargado eléctricamente que deposita una carga negativa en él.

En las verdaderas impresoras láser, la carga selectiva es hecha por las interrupciones on y off del láser durante el escaneo del tambor, utilizando un complejo sistema de espejos y lentes giratorios. Estos espejos giran increíblemente rápido y en sincronización con las interrupciones del láser. Una impresora láser típica, puede perfectamente realizar millones de interrupciones cada segundo.

Dentro de la impresora, el tambor rota para construir una línea horizontal por vez. Claramente, esto tiene que ser hecho de una manera muy eficiente. Cuanto más pequeña la rotación, más alta será la resolución de la página. La rotación de una impresora láser moderna es típicamente 1/600 de pulgada, dando 600 dpi de resolución vertical. De manera similar, cuanto más rápidas sean las interrupciones on y off del láser, más alta será la resolución horizontal.

Mientras el tambor rota para presentar el área próxima para el tratamiento con el láser, el área escrita se mueve hacia el tóner. El tóner es un polvo negro muy fino negativamente cargado, lo que causa que sea atraído hacia los puntos con cargas positivas en la superficie del tambor. Así, después de una rotación completa, la superficie del tambor contiene toda la imagen a imprimirse en la página.

Una hoja de papel (cargado positivamente) luego entra en contacto con el tambor, alimentado por una serie de engranajes lisos. Mientras completa su rotación va tomando el tóner del tambor a causa de su atracción magnética, transfiriendo así la imagen al papel. Las áreas del tambor cargadas negativamente no atraen el tóner, lo que resulta en las áreas blancas de la impresión.

El tóner está especialmente diseñado para derretirse muy rápidamente, y un fuser (o fusionador) aplica calor y presión al papel para hacer que el tóner se adhiera permanentemente. Por esto es que el papel sale de una impresora láser caliente al tacto.

La etapa final es limpiar el tambor de algún remanente de tóner, para poder comenzar el ciclo de nuevo.

Hay dos formas de limpieza, físico y eléctrico. Con el primero el toner que no ha sido transferido a la página es mecánicamente quitado de la página, y un colector de tóner de desperdicio lo deposita en un compartimiento. La limpieza eléctrica consiste en cubrir al tambor con una carga eléctrica uniforme, permitiendo que el láser pueda escribir de nuevo. Esto es hecho por un elemento eléctrico llamado cable corona. Ambos elementos, tanto el pad que limpia el tambor como el cable corona, necesitan ser cambiados regularmente.

Muchas de las llamadas impresoras láser son actualmente del tipo LED. Estas impresoras LED son una alternativa más barata que las láser convencionales. El láser y los espejos son reemplazados por una línea fija de LEDs. A 300 dpi una impresora de este tipo tiene 300 LEDs por pulgada, a lo ancho de la página. La ventaja de este tipo de impresoras es, obviamente, el precio, porque la línea fija de LEDs la hacen más barata que una verdadera láser, que tiene muchas partes móviles. La desventaja tiene que ver con la calidad de impresión, porque la resolución horizontal es absolutamente fija, y no pueden aplicarse actualizaciones como en las verdaderas láser. Las impresoras LCD trabajan con un principio similar, usando un panel de cristal líquido como fuente de luz.

Láser color

Las impresoras láser son usualmente dispositivos monocromáticos, pero como la mayoría de las tecnologías monocromáticas, puede ser adaptada al color. Cualquier color puede ser hecho por una combinación de cian, magenta, y amarillo, realizando cuatro pasadas a través del proceso electro-fotográfico, generalmente ubicando los tóners en la página uno a la vez, o construyendo la imagen a cuatro colores en una superficie intermedia de transferencia.

La mayoría de las impresoras láser tienen una resolución nativa de 600 o 1200 dpi. Un modo a más baja resolución puede obtenerse variando la intensidad de sus spots láser o LED, pero logra puntos de tóner multinivel más rústicos, resultando más una mezcla de impresión contone y medio tono que de tono continuo. La velocidad promedio varía entre 3 y 5 ppm en color y 12 a 14 ppm en monocromo. Un área clave del desarrollo, en la que la impresora LED de Lexmark ha sido pionera, es la de incrementar la velocidad de impresíon a color hasta el nivel de las blanco y negro, mediante el procesamiento simultáneo de los cuatro tóners y logrando así imprimir en una sola pasada.

La Optra Colour 1200N de Lexmark logra esto mediante un procesamiento completamente separado de los colores. La compactación que surge del uso de las series de LEDs, permite que la parafernalia asociada con una unidad de imagen láser pueda ser construida con cuatro cabezales de impresión. Los cartuchos de tóner CMY y K son colocados en el sendero de papel y cada unidad tiene su propio tambor fotoconductivo. Por encima de cada unidad hay cuatro series de LEDs – de nuevo, una por cada color -. Los datos pueden ser enviados a las cuatro cabezas simultáneamente. El proceso comienza por el magenta y pasa a través del cian y amarillo, con el negro siendo colocado último.

Aparte de su velocidad, una de las ventajas principales de las láser color es la durabilidad de sus impresiones. Porque el tóner es fundido en el papel, en vez de absorbido por éste, como en las impresoras de inyección de tinta.

Lenguajes de descripción de página

La comunicación entre una computadora y una impresora es muy diferente hoy que lo que era algunos años atrás. El texto era enviado en código ASCII con un simple código de carácter, indicando bold, itálica, condensada o agrandada y los gráficos eran producidos línea por línea. La gran ventaja del texto descrito en ASCII es que la transmisión sucede rápida y fácilmente: si el documento electrónico contiene la letra A, el código ASCII para la A es enviado a la impresora, que reconociendo el código, imprime una A. El gran problema era que sin un cuidadoso planeamiento, la letra impresa raramente terminaba en la misma posición que ocupaba en la pantalla. Peor aún, el proceso entero era dependiente del dispositivo, y muy impredecible, con diferentes impresoras entregando diferentes tamaños y formas de fuentes.

PostScript

La situación cambió dramáticamente en 1985 con el anuncio de Adobe del PostScript Level 1, basado en Forth y posiblemente el primer lenguaje de descripción de página estándar multiplataforma e independiente del dispositivo. PostScript describe las páginas de forma vectorial en outline, las cuales son enviadas hacia el dispositivo de impresión para ser convertidas en puntos (rasterisado) en el dispositivo mismo. Un monitor puede manejar 75 dpi, una laser puede ir de los 300 dpi hasta los 2400 dpi o más. Cada una produce representaciones de la descripción PostScript, teniendo los tamaños y las posiciones de las formas en común. Aquí es donde nació la famosa sigla WYSIWYG – What You See Is What You Get (lo que ves es lo que obtienes).

El hecho de que el proceso de impresión pudiera ser realizado de igual manera en una impresora de 300 dpi o en una de 2400 y que además, fuera posible enviar las instrucciones PostScript desde cualquier plataforma, constituyó un gran avance. Todo lo que era requerido era un driver para transformar la información del documento en PostScript y ser enviada a una impresora que soportara el lenguaje.

PostScript Level 2, lanzada hace unos pocos años, ofreció color independiente del dispositivo, compresión de datos para impresión más rápida, y mejoró los algoritmos de medio tono, el manejo de memoria y recursos. PostScript Extreme (formalmente llamado Supra) es la nueva variante de Adobe, utilizada al máximo nivel en sistemas de impresión de gran volumen y de alta velocidad como las prensas digitales.

PCL

El aproximamiento de Adobe dejó una brecha en el mercado que Hewlett-Packard intento aprovechar con su lenguaje de descripción de página basado en su Printer Command Language, PCL, cuya primera aparición data de la década del 70.

El marketing de HP ha sido radicalmente distinto al de Adobe, optando por la clonación masiva en vez de la licencia exclusiva. Esta estrategia ha producido que las impresoras equipadas con clones de PCL cuesten mucho menos que las que tienen licencia exclusiva de PostScript. El problema de tener tantos clones de PCL es que no se puede garantizar 100% una salida idéntica en todas las impresoras. Esto es sólo un problema cuando la intención es reproducir una prueba exacta antes de enviar los documentos. Sólo PostScript puede ofrecer una garantía absoluta.

PCL fue hecho originalmente para ser usado con impresoras de matriz de puntos y es más un código de escape que un PDL completo. Su primera versión (llamada versión 3), sólo soportaba tareas simples. PCL 4 agregó mejor soporte para gráficos y es todavía usado en impresoras personales. Requiere menos poder de procesamiento que el PCL 5 o la última versión; PCL 6.

PCL 5, desarrollado para la LaserJet III, ofreció una característica similar a PostScript, con fuentes escalables a través del sistema Intellifont y descripciones vectoriales consiguiendo WYSIWYG en el escritorio. PCL 5 también utilizó varias formas de compresión que aceleró los tiempos de impresión de una forma considerable comparado con PostScript Level 1. PCL 5e trajo comunicación bidireccional para status report, pero no mejoras en la calidad de impresión, mientras que PCL 5c agregó funciones específicas para impresoras color.

En 1996 HP anunció PCL 6. Primero implementado en la LaserJet 5, 5N y 5M, ofrecía procesamiento más rápido de documentos más ricos gráficamente y mejores facilidades WYSIWYG. El código más eficiente, combinado con procesadores más rápidos y aceleración por hardware dedicado de las impresoras LaserJet 5, resultó en un incremento en la «impresión de la primera página» del 32% con respecto a las LaserJet 4.

GDI

La alternativa a las impresoras láser que usan lenguajes como PostScript y PCL son las Windows GDI (Graphical Device Interface), impresoras de mapa de bits. Éstas usan la PC para convertir (render) las páginas antes de mandarlas como un bitmap para su impresión directa, usando la impresora sólo como un motor de impresión. Consecuentemente, no hay necesidad de procesadores caros o grandes cantidades de RAM on-board, haciendo la impresora más barata. De todas maneras, mandar la página completa en un mapa de bits comprimido toma tiempo, reduciendo la velocidad de impresión e incrementando el tiempo tomado para recuperar el control de la PC. Estas impresoras están generalmente confinadas al mercado de las impresoras personales.

Algunos fabricantes eligen usar Windows Printing System (sistema de impresión de Windows), un estándar desarrollado por Microsoft para crear una arquitectura universal para impresoras GDI. El Windows Printing System trabaja sutilmente diferente al modelo GDI puro. Activa el lenguaje Windows GDI para ser convertido en un bitmap mientras se imprime; la idea básica es reducir la fuerte dependencia de la impresora del procesador de la PC. Bajo este sistema, la imagen va siendo interpretada durante el proceso de impresión, lo que reduce la cantidad de poder de procesamiento requerido de la PC.

Otros modelos de impresoras usan una combinación de la tecnología GDI y la arquitectura tradicional, permitiendo impresión rápida desde Windows, como así tambien soporte para aplicaciones DOS nativo.

Adobe PrintGear

Una alternativa para impresoras personales es Adobe PrintGear – un sistema completo de hardware/software basado en un procesador diseñado por Adobe específicamente para el lucrativo mercado SoHo (small and home office, «pequeña oficina en casa»). Adobe proclama que el 90% de los típicos documentos SoHo pueden ser descritos por un pequeño número de objetos básicos. Consecuentemente diseñaron un procesador dedicado de 50 MHZ para manejar específicamente estas tareas, al cual le adjudican ofrecer grandes incrementos de velocidad sobre los procesadores tradicionales y además ser más barato. Una impresora equipada con Adobe PrintGear incluye el procesador dedicado y un sofisticado driver.